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Gas Separation Membranes
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Ideal Selectivity
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Sieving: Robeson Upper Bound
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Machine Learning
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Importance of training vs test sets



Machine Learning - Fingerprinting

These are some of the

c2 Cc3 C4 O1 02 H1 structures and how they
g ; are modeled.

C2-C3 C3-C4 02-C4

P o4

C2-C3-C4 02-C4-C4 H1-02-C4



Robeson Upper Bound - MACHINE LEARNING
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Robeson Upper Bound - MACHINE LEARNING
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Robeson Upper Bound - MACHINE LEARNING

Machine Learning is going to play a central role.

Molecular Structure is important. Use of ML alone is not enough.

Molecular Modeling and Experiments are important



